Bacteroides fragilis Toxin Induces Cleavage and Proteasome Degradation of E-Cadherin in Human Breast Cancer Cell Lines BT-474 and MCF7
Keywords:
Enterotoxigenic Bacteroides fragilis, E-cadherin, Proteasome, StaurosporineAbstract
Enterotoxigenic Bacteroides fragilis (ETBF) has been reported to promote colitis and colon cancer through the secretion of B. fragilis toxin (BFT), a zincdependent metalloprotease. In colonic epithelial cells, BFT induces the cleavage of E-cadherin into the 80 kDa ectodomain and the 33 kDa membrane-bound intracellular domain. The resulting membrane-tethered fragment is then cleaved by γ-secretase forming the 28 kDa E-cadherin intracellular fragment. The 28 kDa cytoplasmic fragment is then degraded by an unknown mechanism. In this study, we found that the 28 kDa E-cadherin intracellular fragment was degraded by the proteasome complex. In addition, we found that this sequential E-cadherin cleavage mechanism is found not only in colonic epithelial cells but also in the human breast cancer cell line, BT-474. Lastly, we reported that staurosporine also induces E-cadherin cleavage in the human breast cancer cell line, MCF7, through γ-secretase. However, further degradation of the 28 kDa E-cadherin intracellular domain is not dependent on the proteasome complex. These results suggest that the BFT-induced E-cadherin cleavage mechanism is conserved in both colonic and breast cancer cells. This observation indicates that ETBF may
also play a role in the carcinogenesis of tissues other than the colon.
References
Eckburg PB, Bik EM, Bernstein CN, et al., 2005, Diversity of the Human Intestinal Microbial Flora. Science, 308(5728): 1635–1638. https://doi.org/10.1126/science.1110591
Pierce JV, Bernstein HD, 2016, Genomic Diversity of Enterotoxigenic Strains of Bacteroides fragilis. PLoS One, 2016(11): e0158171. https://doi.org/10.1371/journal.pone.0158171
Hwang S, Gwon SY, Kim MS, et al., 2013, Bacteroides fragilis Toxin Induces IL-8 Secretion in HT29/C1 Cells Through Disruption of E-Cadherin Junctions. Immune Netw, 13(5): 213–217. https://doi.org/10.4110/in.2013.13.5.213
Lee CG, Hwang S, Gwon SY, et al., 2022, Bacteroides fragilis Toxin Induces Intestinal Epithelial Cell Secretion of Interleukin-8 by the E-Cadherin/β-Catenin/NF-κB Dependent Pathway. Biomedicines, 10(4): 827. https://doi. org/10.3390/biomedicines10040827
Goodwin AC, Destefano Shields CE, Wu S, et al., 2011, Polyamine Catabolism Contributes to Enterotoxigenic Bacteroides fragilis-Induced Colon Tumorigenesis. Proc Natl Acad Sci USA, 108(37): 15354–15359. https://doi.org/10.1073/pnas.1010203108
Allen J, Hao S, Sears CL, et al., 2019, Epigenetic Changes Induced by Bacteroides fragilis Toxin. Infect Immun, 87(6): e00447–e00418. https://doi.org/10.1128/IAI.00447-18
Devaux CA, Mezouar S, Mege JL, 2019, The E-Cadherin Cleavage Associated to Pathogenic Bacteria Infections Can Favor Bacterial Invasion and Transmigration, Dysregulation of the Immune Response and Cancer Induction in Humans. Front Microbiol, 10(2598): 1–19. http://doi.org/10.3389/fmicb.2019.02598
Koirala R, Priest AV, Yen CF, et al., 2021, Inside-Out Regulation of E-Cadherin Conformation and Adhesion. Proc Natl Acad Sci USA, 118(30): 1–12. http://doi.org/10.1073/pnas.2104090118
Troyanovsky SM, 2022, Adherens Junction: The Ensemble of Specialized Cadherin Clusters. Trends Cell Biol, 33(5): 374–387. http://doi.org/10.1016/j.tcb.2022.08.007
Na TY, Schecterson L, Mendonsa AM, et al., 2020, The Functional Activity of E-Cadherin Controls Tumor Cell Metastasis at Multiple Steps. Proc Natl Acad Sci USA, 117(11): 5931–5937. https://doi.org/10.1073/pnas.1918167117
Damsky CH, Richa J, Solter D, et al., 1983, Identification and Purification of a Cell Surface Glycoprotein Mediating Intercellular Adhesion in Embryonic and Adult Tissue. Cell, 34(2): 455–466. https://doi.org/10.1016/0092-8674(83)90379-3
Yoo CB, Yun SM, Jo C, et al., 2012, γ-Secretase-Dependent Cleavage of E-Cadherin by Staurosporine in Breast Cancer Cells. Cell Commun Adhes, 19(1): 11–16. https://doi.org/10.3109/15419061.2012.665969
Hugo HJ, Wafai R, Blick T, et al., 2009, Staurosporine Augments EGF-Mediated EMT in PMC42-LA Cells Through Actin Depolymerisation, Focal Contact Size Reduction and Snail1 Induction – A Model for Cross-Modulation. BMC Cancer, 2009(9): 235. https://doi.org/10.1186/1471-2407-9-235
Wu S, Rhee KJ, Zhang M, et al., 2007, Bacteroides fragilis Toxin Stimulates Intestinal Epithelial Cell Shedding and Gamma-Secretase-Dependent E-Cadherin Cleavage. J Cell Sci, 120(11): 1944-1952. https://doi.org/10.1242/jcs.03455 Erratum in: J Cell Sci, 120(20): 3713.
Rios-Doria J, Day KC, Kuefer R, et al., 2003, The Role of Calpain in the Proteolytic Cleavage of E-Cadherin in Prostate and Mammary Epithelial Cells. J Biol Chem, 278(2): 1372–1379. https://doi.org/10.1074/jbc.M208772200
Grabowska MM, Day ML, 2012, Soluble E-Cadherin: More Than a Symptom of Disease. Front Biosci (Landmark Ed), 17(5): 1948–1964. https://doi.org/10.2741/4031
Bard JAM, Goodall EA, Greene ER, et al., 2018, Structure and Function of the 26S Proteasome. Annu Rev Biochem, 2018(87): 697–724. https://doi.org/10.1146/annurev-biochem-062917-011931
Rousseau A, Bertolotti A, 2018, Regulation of Proteasome Assembly and Activity in Health and Disease. Nat Rev Mol Cell Biol, 2018(19): 697–712. https://doi.org/10.1038/s41580-018-0040-z
Hitchcock AL, Auld K, Gygi SP, et al., 2003, A Subset of Membrane-Associated Proteins is Ubiquitinated in Response to Mutations in the Endoplasmic Reticulum Degradation Machinery. ProcNatl Acad Sci USA, 100(22): 12735–12740. https://doi.org/10.1073/pnas.2135500100
Asakura T, Yamaguchi N, Ohkawa K, et al., 2015, Proteasome Inhibitor-Resistant Cells Cause EMT-Induction Via Suppression of E-Cadherin by miR-200 and ZEB1. Int J Oncol, 46(5): 2251–2260. https://doi.org/10.3892/ijo.2015.2916
Yang JY, Zong CS, Xia W, et al., 2006, MDM2 Promotes Cell Motility and Invasiveness by Regulating E-Cadherin Degradation. Mol Cell Biol, 26(19): 7269–7282. https://doi.org/10.1128/MCB.00172-06
Kisselev AF, Callard A, Goldberg AL, 2006, Importance of the Different Proteolytic Sites of the Proteasome and the Efficacy of Inhibitors Varies with the Protein Substrate. J Biol Chem, 281(13): 8582–8590. https://doi.org/10.1074/jbc.M509043200
Kortuem KM, Stewart AK, 2013, Carfilzomib. Blood, 121(6): 893–897. https://doi.org/10.1182/blood-2012-10-459883
Quaglio AEV, Grillo TG, De Oliveira ECS, et al., 2022, Gut Microbiota, Inflammatory Bowel Disease and Colorectal Cancer. World J Gastroenterol, 28(30): 4053–4060. https://doi.org/10.3748/wjg.v28.i30.4053
Wu S, Powell J, Mathioudakis N, et al., 2004, Bacteroides fragilis Enterotoxin Induces Intestinal Epithelial Cell Secretion of Interleukin-8 Through Mitogen-Activated Protein Kinases and a Tyrosine Kinase-Regulated Nuclear Factor-κB Pathway. Infect Immun, 72(10): 5832–5839. https://doi.org/10.1128/IAI.72.10.5832-5839.2004
Park CH, Eun CS, Han DS, 2018, Intestinal Microbiota, Chronic Inflammation, and Colorectal Cancer. Intest Res, 16(3): 338–345. https://doi.org/10.5217/ir.2018.16.3.338
Cao Y, Wang Z, Yan Y, et al., 2021, Enterotoxigenic Bacteroides fragilis Promotes Intestinal Inflammation and Malignancy by Inhibiting Exosome-Packaged miR-149-3p. Gastroenterology, 161(5): 1552–1566. https://doi.org/10.1053/j.gastro.2021.08.003
Hieken TJ, Chen J, Hoskin TL, et al., 2016, The Microbiome of Aseptically Collected Human Breast Tissue in Benign and Malignant Disease. Sci Rep, 2016(6): 30751. https://doi.org/10.1038/srep30751
Pickard JM, Zeng MY, Caruso R, et al., 2017, Gut Microbiota: Role in Pathogen Colonization, Immune Responses, and Inflammatory Disease. Immunol Rev, 279(1): 70–89. https://doi.org/10.1111/imr.12567
Parida S, Wu S, Siddharth S, et al., 2021, A Procarcinogenic Colon Microbe Promotes Breast Tumorigenesis and Metastatic Progression and Concomitantly Activates Notch and β-catenin Axes. Cancer Discov, 11(5): 1138–1157. https://doi.org/10.1158/2159-8290.CD-20-0537
Lehembre F, Yilmaz M, Wicki A, et al., 2008, NCAM-Induced Focal Adhesion Assembly: A Functional Switch Upon Loss of E-Cadherin. EMBO J, 27(19): 2603–2615. https://doi.org/10.1038/emboj.2008.178
Pohl C, Dikic I, 2019, Cellular Quality Control by the Ubiquitin-Proteasome System and Autophagy. Science, 366(6467): 818–822. https://doi.org/10.1126/science.aax3769
Pei J, Wang G, Feng L, et al., 2021, Targeting Lysosomal Degradation Pathways: New Strategies and Techniques for Drug Discovery. J Med Chem, 64(7): 3493–3507. https://doi.org/10.1021/acs.jmedchem.0c01689
Steinhusen U, Weiske J, Badock V, et al., 2001, Cleavage and Shedding of E-Cadherin After Induction of Apoptosis. J Biol Chem, 276(7): 4972–4980. https://doi.org/10.1074/jbc.M006102200
Wu WJ, Hirsch DS, 2009, Mechanism of E-Cadherin Lysosomal Degradation. Nat Rev Cancer, 2009(9): 143. https://doi.org/10.1038/nrc2521-c1
Oerlemans R, Franke NE, Assaraf YG, et al., 2008, Molecular Basis of Bortezomib Resistance: Proteasome Subunit Beta5 (PSMB5) Gene Mutation and Overexpression of PSMB5 Protein. Blood, 112(6): 2489–2499. https://doi.org/10.1182/blood-2007-08-104950
Wu S, Lim KC, Huang J, et al., 1998, Bacteroides fragilis Enterotoxin Cleaves the Zonula Adherens Protein, E-Cadherin. Proc Natl Acad Sci USA, 95(25): 14979–14984. https://doi.org/10.1073/pnas.95.25.14979
Heerboth S, Housman G, Leary M, et al., 2015, EMT and Tumor Metastasis. Clin Transl Med, 4(1): 1–13. https://doi.org/10.1186/s40169-015-0048-3