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Abstract: In this work, we used the MATLAB code to calculate the growth rate of the Weibel instability (WI) in weakly
relativistic parameters of laser-plasma interaction in the inertial thermonuclear fusion. In this study, the basic equation is
the relativistic Fokker-Planck equation (FPE). However in our paper, the distribution function is not supposed but it is
calculated from FPE by considering the fusion plasma heating by the laser source and the collisions term which
corresponds to the laser fusion experiments. The main obtained result is a decrease in the spectral range of Weibel
unstable modes. This decreasing is accompanied by a reduction of two orders in the growth rate spectrum of instability,
this spectrum presents a maximum, which can be in terpreted by the competition between the loss effects (collisions and
Landau damping) and the inverse bremsstrahlung absorption (IBA) with parameters of laser-plasma interactions.
Keywords: relativistic Weibel instability; laser fusion plasma, static magnetic field; stabilization; Relativistic laser
plasma interaction.

1. Introduction
Weibel instability [�] is a micro instability. It corresponds to the excitation of electromagnetic modes in plasmas

characterized by temperature anisotropy. In a microscopic way, this corresponds to plasma described by an anisotropic
distribution function in velocity space. The temperature anisotropy can be generated in plasma by different mechanisms,
specifically the heat transport, the expansion of the plasma, and the inverse bremsstrahlung absorption [2]. We aim in this
work to investigate the WI due to inverse bremsstrahlung absorption taking into account the stabilization effect due to
the coupling of the self-generated magnetic field by the WI with the laser wave field in the relativistic regime, these
needs to derive the dispersion relation of low-frequency electromagnetic Weibel modes in plasma heated by a laser
pulse. The basic equation in this investigation is the relativistic FPE [3].

It results highlight new terms in the dispersion relation due to the coupling between the laser electric field, and the
resulting magnetic field by the WI. These terms contribute to the instability and the convection of Weibel modes. We
consider inhomogeneous plasma in interaction with a high frequency and low magnitude laser field. We calculate the
distribution function from the anisotropic FPE. For this, we use the method of separation of time scales and the iterative
method. After, we solve the linear part of the FPE associated with the disruption of the distribution function and
establish the dispersion relation of the Weibel modes. Solving the dispersion relation leads to the calculation of the
instability growth rate.

The present work is organized as follows: in section �, we present our theoretical model, which is the FPE. In
section 2, we calculate the distribution function. In section 3, we present an analysis of WI. Finally in section 4 and 5
we present a discussion of results and a brief conclusion summarizing our main results is given.

2. Theoretical model
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To describe fully ionized plasma where interactions between particles are dominated by the Coulomb interactions,
it is judicious to use the FPE given in the Ref [4]. For electrons, it is written in the laboratory frame as:
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Where f = f r��,p��,t is the electrons distribution functions, γl = (1 + p2

me
2c2
)1/2 is the relativistic Lorentz factor, p =

m γlv is the quantity of movement, me is the electron mass and e is the elementary charge.
Cee f and Cei f mean respectively is the electron-electron and electron-ion collision [5].
E�� and B�� are respectively the electric and the magnetic fields present in the plasma.written as: E�� = E��h + E��s and

B�� = B��h + B��s , where E��h and B��h represent the high-frequency fields associated to the laser wave, E��s and B��s mean
low frequency fields associated to the disturbance in the plasma. The contribution of the high-frequency laser wave
magnetic field B��h, can be neglected compared to the contribution of the laser wave high-frequency electric field, E��h
as typically:E��h/B��h~c . and E��s/B��s~

ω
k
≪ 1, The temporal dependence of E��h is supposed to be a normal mode:

E��h = E��0Re exp iωlt (2)
where E��0 and ωl are respectively the complex magnitude and the frequency of the laser wave.
In order to solve the equation (�) we consider two time scales, a low-frequency hydrodynamic time scale and

high-frequency (laser field) one. Therefore, the electronic distribution function f can be written as the sum of a
quasi-static distribution function fs , which varies slowly over time and a high-frequency distribution function fh ,
which follows the temporal variation of high frequency laser electric field E��h, so:

f r��,p��,t = fs r��,p��,t + Re(fh p�� exp iωt ) (3)
Note that the indices "s" and "h" refer the time scales (low frequency) and high frequency respectively and will be

used throughout this work.
The separation of time scales in equation (�) leads to two kinetic equations: a quasi-static kinetic equations and a
high-frequency kinetic equation, so:
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where The symbol < > denotes the average over the laser wave cycle time T = 2π/ωl . The above two coupled
equations are the basic equations in the present work. Note here that the terms in the electric field E��s and magnetic
field, B��s reflect the inclusion, in our study, of the low frequency electromagnetic field. In particular, the first term on
the right hand side in equation (4) reflects the coupling of quasi-static fields with the laser field. Let us remember here
that this field present in the plasma is generated by the mechanism of the WI. The right-hand side of equation (5) is a
term of beat or IB; which translates the contribution of the laser field in the description of the distribution function fs.

3. CALCULATION OF DISTRIBUTION FUNCTION.
Firstly, we computing the high frequency distribution function from equation (4), we suppose that the effect of the

quasi-static field and the (e-i) collisions are small compared to the effect of the high frequency laser field. Then it is
judicious to consider the following scaling for the high frequency distribution function:

fh = fh
0 ωl + fh

1 vei
ωl
,
ωc

ωl
(6)

where the index 0 and � correspond to the magnitude order of high frequency distribution function. We analyze the
equation (6) for typical physical parameters of laser-plasma interactions: electronic temperature, Te = 5KeV, the (e-i)
mean free path, λei = 1μm and laser wave length λl = 1.06μm . It appears that the laser frequency ωl , is very
important that the collisions frequency, vei and using iterative method.

Secondly, to obtain the low frequency distribution function, we substitute the expression of the high frequency
distribution function in equation (5).

For resolve this equation, we consider the following scaling:
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�� = ��
(0) + ��� (뫘)

With �� ≪ ��
(0) ,The distribution function ��

(0) describes the plasma in presence of high frequency laser field
�� , however �� corresponds to the perturbation associated to quasi-static electromagnetic field: �� and ��. The
evolution equation of the perturbed function is obtained from low frequency equation by considering the first term
order.

We now return to the previous analysis of Weibel modes by considering the electron ion collisions as
described by the relaxation operator of Krook type, as follow:

Cei fl =
− υ
p3

me
3 γl

3 l(l + 1)[fl − fh] (8)

Where v =
pt
4

2λei
and λei is the e-i mean free path. and l is the order of the Legender polynomial or the ordre

of the component of the distribution function trucated on the Legender polynomials.
Where Now, we develop the distribution function fs

0 (p,μ). on the Legendre polynomials pl μ [6,7], and using
the method of calculation in the reference [4], we find the equation of the distribution function,
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4. Relativistic weibel instability analysis
This paragraph is devoted to the analysis growth rate of the relativistic WI. We determine the dispersion relation of

the Weibel modes and deduce the growth rate of WI; The dispersion relation of electromagnetic modes can be
calculated using the perturbed Fokker-Planck equation coupled with Maxwell's equations presented as follows[8]:
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where j


is the current density defined by
j� =− iμ0e

p
γlme

δf r��,p��,t� dp� ��� (12)
By considering that the spatio-temporal dependence of the field E��s and Bs� �� as a Fourier mode ~exp iωt − ik��.r��

equations (�0) and (�2) can be represented as:
kEs = ωBs (13)

kBs =− iμ0e
p

γlme
δfs dp��� (14)

By developing the function δfs, In the spherical harmonics basis yl
m(θ,φ) , the equation (�4) reads as:

kBs =− ieμ0
2π
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for fs0
0 = F p ,Where F p is The Jüttner (relativistic Maxwellian) distribution function[9] is given by:
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is the Lorentz factor and K2 μ denotes the modified Bessel function defined by:

K2 η =
1
2
2πmekbT −3/2e−η (1뫘)

This function can be presented in the case of weakly relativistic plasma, where η ≫ 1 and the modified Bessel
function can be written as : K2(η) ≈

�
2η

1
2exp ( − η). This approximation is justified in the inertial fusion experiments.
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Typically ��/���2 ≃ 0.01 for �� = 5 ��ᛲ, By developing the relativistic Maxwellian distribution function as:
Using this equations , The dispersion relation in a plasma hight relativistic temperature, is obtained:
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The relativistic growth rate of Weibel instable mode  is obtained explicitly from this dispersion relation, so:
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5. Discussion
The first term of equation (�9) corresponds to a loss term due to Landau damping and to collisions effect; it is

dominated by collisions loss in the limit: (�λ�� ≪ 1) while in the non-collisional limit ( �λ�� ≫ 1) , it is dominated by
the Landau damping of electromagnetic modes.

The second term, ~�0
2, corresponds to the WI source. Equation (�9) gives explicitly the growth rate of the Weibel

modes excited by IBA in laser fusion plasma as function of laser pulse and plasma parameters via an integral form.
The spectra of the growth rate �(�) which give the growth rate of the all the instables Weibel modes (not only the

��th ). The calculated �(�) in our paper, contains two contributions: a Landau damping and an instability source
propotional to the second ansisotropy of the distribution function developped on the legendre polynomials, �2 which is
propotional to the laser intensity via the term �0

2 ∼ �.
This shows clearly that the source of the anisotropy and consequentely of the instability is the laser heating.
We have presented in (Figures �) the growth rate spectra of WI � � , as function of the collision parameter �λ��

for typical parameters of the laser pulse and plasma. We point out that without the stabilization term, ��� ��0
0 . In

addition, the comparison of the obtained spectra with previous works shows an overestimates by two orders in the
growth rate of the most unstable Weibel mode in the non-relativistic case.

6. Conclusion
In conclusion, the WI is theoretically studied using the FPE by considering the Krook collisions model. The

dispersion relation of the Weibel modes is explicitly established under some justified approximation in the laser-fusion
experiments [�0, ��]. Taking into account to stabilization effect by the inclusion of the term ��� ��

0 led to a significant
reduction in the Weibel instability growth rate. Numerical treatment of model equations shows that the growth rate of
the most unstable Weibel mode decreases by two orders of magnitude. This decrease in the growth rate magnitude is
accompanied by a greater reduction in the spectral range of instability. For high density plasma, the Weibel
modes become completely stables. Therefore, the generation of magnetic fields by the WI due to
inverse bremsstrahlung should not affect the experiences of inertial confinement fusion. Several possible extension of
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this study is possible; namely the taking into account of the nonlinear effect [�2, �3, �4] due to the high intense laser pulse.
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Figure 1. growth Rate of instability γ from the Krook model ,depending on the collision parameter kλei, for typical parameters

of laser pulse and fusion plasma: Te = 5KeV, λei = 1μm, λl = 1.06μm ne=�026 cm-3 and p0/pt=0,�.
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