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Abstract: In this paper the modified Landau theory of Fermi Liquids was used to compute the thermal expansion and
thermal conductivity of quasi-particles in metals. The result revealed that as temperature increases the thermal
expansion of quasi-particles in metals increases in all the metals investigated. It is also observed that as the electron
density parameter increases the thermal expansion of quasi-particles increases. This shows that at low density region the
thermal expansion of quasi-particles is large. The result obtained for the thermal conductivity of quasi-particles in
metals revealed that for all the metals computed the thermal conductivity of quasi-particles decreases as temperature
increases. This seems to suggest that as temperature increases the separation between quasi-particles increases because
they are not heavy particles hence, the rate of absorbing heat decreases. The computed thermal expansion and thermal
conductivity of quasi-particles are in better agreement with experimental values. This suggests that the introduction of
the electron density parameter is promising in predicting the contribution of quasi-particles to the bulk properties of
metals. This study revealed the extent to which quasi-particles contribute to the bulk properties of metals, which
assisted their potential applications in materials science and engineering development.<strong></strong>
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1. Introduction
The understanding of the effect of the interactions between electrons on the metallic state which is based on the

Landau's Fermi-liquid theory provides the basis for understanding metals in terms of weakly interacting quasi-particles.
At zero temperature a Fermi liquid has a Fermi surface, similar to the non-interacting Fermions[7]. The low lying
excitations of the Fermi liquid are called quasi-particles (or Landau quasi-particles). Landau quasi-particles consist of
electrons, surrounded by a cloud of spin and charge polarization. They share the same quantum numbers as free
electrons but their masses can be strongly renormalized by the back flow of the surrounding fluid[1]. When materials
undergo thermodynamical change, the energy received is in form of heat hence, its temperature rises and thereby
changes in dimension[2]. Heat capacities, thermal expansion, thermal conductivities are few important properties often
critical in the practical and engineering applications of solids. Nodar, and Levan, (2010) generalized the Landau’s
theory of Fermi liquids by incorporating the de Broglie waves diffraction. A newly derived kinetic equation of the Fermi
particles is used to derive a general dispersion relation and the excitation of zero sound is studied. A new mode is found
due to the quantum correction. It is shown that the zero sound can exist even in an ideal Fermi gas. They also disclose a
new branch of frequency spectrum due to the weak interaction. Sykes and Brooker (1970) derived exact expressions
for the transport properties of a degenerate Fermi liquid. The coefficients of shear viscosity, thermal conductivity,
diffusion and second viscosity were evaluated giving solution for shear viscosity, and diffusion that agree within 25%
with those originally quoted. However, the thermal conductivity is reduced by a factor of about 2. The coefficient of
second viscosity was shown to vary with temperature like T2. Gangadharaiah, et al., (2005) consider a system of 2D
fermions with a short-range interaction. A straight forward perturbation theory is shown to be ill defined even for an
infinitesimally weak interaction, as the perturbative series for the self-energy diverges near the mass shell. They show
that the divergences result from the interaction of fermions with the zero-sound collective mode. By re-summing the
most divergent diagrams, they obtain a closed form of the self-energy near the mass shell. The spectral function exhibits
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a threshold feature at the onset of the emission of the zero-sound waves. They also show that the interaction with the

zero sound does not affect a non-analytic,
2T part of the specific heat. In this work, we modified the Fermi liquid

theory using the electron density parameter and the modified Fermi liquid theory is used to compute the thermal
expansion and thermal conductivity of Fermi liquid in other to see the predictability of our modified Fermi liquid
theory.

Quasi-particles are non-interacting quantum gases that are supposed to contribute to the bulk properties of metals.
But the Landau Fermi liquid model overestimated and also underestimated the contribution of quasi-particles of most of
the bulk properties of metals investigated. Hence, the modified Landau model effectively account for the over
estimation and underestimation of the Landau-Fermi liquid model.

2. Theory and calculations
2.1 Thermal expansion of quasi-particles

The delocalized free-electron gas of a metal also contributes to the thermal expansion of the metal, in addition to
the anharmonic atomic vibrational contribution, the pressure of the Fermi gas is given by[4],
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Since the volume thermal-expansion coefficient is given by[10],
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Where B is the bulk modulus, there is a positive electronic contribution to the thermal expansion because U(T,V) is an

increasing function of T. The thermal-expansion coefficient is given as,
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Equation (5) can be written by using,
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and also the Bulk modulus equation given by,
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In atomic units the bulk modulus of metals is given by,
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a temperature independent constant, cr (a.u) is the Ashcroft core radius and rs is the electron density which
varies between 2 and 6 for most metals. Recall that the Fermi energy of the metals at the Fermi surface is given by[3],
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Inserting equation (11) into equation (10), then, the thermal expansion of quasi-particles in terms of the electron

density parameter rs is expressed as,
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2.2 Thermal conductivity of quasi-particles

The Boltzmann transport equation is given by[9],
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Here  , ,n n p r
is the distribution function for quasi-particles. The energy  , ,p r  

of a given
quantum level depends upon the distribution of the other particles; therefore  can vary from place to place (even in
the absence of an external field) if the liquid is inhomogeneous.

The left-hand side of the Boltzmann transport equation is expanded to

give,
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The term in the left-hand side of equation (14) relevant to the thermal conductivity is given by,
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Where  is the Fermi energy. If we approximate
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 is a function of energy, and is expanded as a power series in t. The direction

of the polar axis is taken to be that of T , which means that the left-hand side contains cos as its only spherical
harmonic[6].Then we will have,
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Then a solution of the form is applied and is given as,
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The coefficient of  q t
is made a quantity that is evaluated at the Fermi surface, so that all of the variation with

energy is defined to be in  q t
. Recall that,
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Then substituting equation (18) into equation (19) and equation (20), we have,
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Equations (21) and (22) are the integral equations that are to be solved in order to find the thermal conductivity. By

considering first equation (21) it is shown that  sq t
is of the order

1T 
, so that it is negligible beside  aq t

. In

addition the argument is fairly lengthy. First we have to evaluate Ts 
  . When a temperature gradient is imposed

on the Fermi liquid, the physics of the liquid determines the gradient of  , so that it must be possible to find
 from the transport equation. The required condition is provided by the conservation of momentum, given by,
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S is the entropy per particle and more physically,
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From equation (27) it appears that in the presence of a temperature gradient the liquid arranges itself to be at a
uniform pressure [7]. Recall that,
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Equation (28) can be rewritten as,
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Considering equation (14), the solution consists of a particular solution and a complementary function which is zero.
The thermal conductivity k is given by,

Q k T   (30)

Where Q is the flux energy, given by,
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We can see that the contribution of sq to the thermal conductivity is two factors of T smaller than that of aq , so the
even function need be considered no further . The odd function is taken into consideration, and using equation (32) and
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and 0.577  while 1s and 2s are given as,
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Recall that the Fermi momentum of the quasi-particles at the Fermi level is given as[3],
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Inserting equation (37) into equation (34), then, the obtained thermal conductivity of quasi-particle in terms of the
electron density parameter rs is,
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3. Results and Discussion
Figure 1 and Figure 2 show the relationship between the computed thermal expansion of quasi-particles and

Landau thermal expansion of quasi-particles with temperature for some metals respectively. The results revealed that
the thermal expansion of quasi-particles increases as temperature increases for all the metals investigated. Also, the
computed thermal expansion of quasi-particles in metals is larger than the Landau thermal expansion of quasi-particles
in metals. This may be as a result of the electron density parameter used to modify the Landau Fermi liquid theory and
some approximations made. In both cases as temperature increases the thermal expansion of quasi-particles is closer to
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the bulk thermal expansion. But the computed thermal expansion of quasi-particles is closer to bulk thermal expansion
of metals than the Landau thermal expansion of quasi-particles. This suggests that as temperature increases the
amplitude of the lattice vibration of quasi-particles increases, the average interatomic distance becomes greater than the
zero-temperature separation and hence thermal expansion is enhanced[4]. In all the metals investigated transition metals
have lower thermal expansion than alkali and alkali earth metals. This is due to high concentration of quasi-particles in
transition metals.
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Figure 3 and Figure 4 show the relationship between the computed thermal conductivity of quasi-particles and
Landau thermal conductivity of quasi-particles with temperature for some metals. The result revealed that for all the
metals investigated the thermal conductivity of quasi-particles decreases as temperature increases. This seems to
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suggest that as temperature increases the separation between quasi-particles increases because they are not heavy
particles hence, the rate of absorbing heat decreases. It is also observed that the computed thermal conductivity of
quasi-particles for monovalent metals is larger in transitions metals (copper (Cu), silver (Ag) and gold (Au)) than most
of the alkali metals. This is due to the d-block electrons that have filled electron shell which lies high up in the
conduction band in noble metals [5]. This shows that thermal conductivity of quasi-particles depends largely on the
electron concentration of metals. The experimental thermal conductivity of metals is higher than the computed thermal
conductivity of quasi-particles and the computed thermal conductivity of quasi-particles is higher than the Landau
thermal conductivity of quasi-particles. But the value of the computed thermal conductivity of quasi-particles is closer
to the value of the experimental thermal conductivity of metals. This seems to suggest that the modified Landau Fermi
liquid theory can account and predict very well the contribution of quasi-particles to the thermal conductivity of metals.
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Figure 3; Variation of Calculated Thermal conductivity of quasi-particles with temperature for some metals.
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4. Conclusion
The thermal expansion of quasi-particles increases as temperature increases for all the metals investigated. In both

cases as temperature increases the thermal expansion of quasi-particles is closer to the bulk thermal expansion. But the
computed thermal expansion of quasi-particles is closer to bulk thermal expansion of metals than the Landau thermal
expansion of quasi-particles. Also, it is observed that the experimental thermal conductivity of metals is higher than the
computed thermal conductivity of quasi-particles and the computed thermal conductivity of quasi-particles is higher
than the Landau thermal conductivity of quasi-particles. But the value of the computed thermal conductivity of
quasi-particles is closer to the value of the experimental thermal conductivity of metals. This seems to suggest that the
modified Landau Fermi liquid theory can account and predict very well the contribution of quasi-particles to the bulk
thermal expansion and thermal conductivity of metals. In both properties the Landau theory of Fermi liquid under
estimated the contribution of quasi-particles to bulk metals.

This study reveals the extent to which quasi-particles contribute to the bulk properties of metals, which will assist
their potential applications in materials science and engineering development.

5. Application of Results
Results obtained from this work can be applied in various areas: The obtained thermodynamic properties of

quasi-particles, in terms of the electron density parameter for some metals can act as a guide to experimentalists when
determining the effect of temperature on the bulk properties of metals. The results obtained in this work give an insight
into how the thermodynamic, transport, structural and magnetic properties of quasi-particles in metals contribute to
the bulk properties of metals.

6. Recommendations for Further Studies
Having used the Landau Fermi liquid theory to develop and obtain expressions for computing some properties of

quasi-particles in different metals, in terms of the electron density parameter the following recommendations are made
for further studies:

This study should be extended to semiconductors and insulators to enable us have a general understanding of the



Materials Science: Materials Review Volume 2 Issue 2 | 2018 | 9

contribution of quasi-particles to the bulk properties of solids.
The model should also be used to study the effect of deformation on the thermodynamics of non-interacting

electron gas.
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